同步发电机在其额定负载范围内允许带各种用电负荷。这些负荷的输入特性会直接影响发电机的输出电压;当负载为纯电阻性时,因为同步发电机的定子(组成:定子铁芯、定子绕组和机座)端电压--电枢端电压与负载电流(Electron flow)是同相的,所以使得转子磁场的前一半被定子磁场削弱,而后一半又被定子磁场加强,一周内合成(解释:由几个部分合并成一个整体)磁场平均值不变,发电机输出电压不变。负载呈现为纯电感性时,则因负载电流滞后电枢端电压90°而使得定子磁场削弱了转子磁场,合成磁场降低,造成发电机输出电压下降。若负载是纯电容性的,负载电流就会超前电枢端电压90°,从而使定子磁场加强了转子磁场,合成磁场增大,发电机输出电压上升。可见;合成磁场是使发电机性能变化的一个重要因素。而合成磁场中起主要作用的是转子磁场即主磁场,因此,调控转子磁场就可以调节同步发电机的输出电压改善其带负载能力,从而达到在额定负荷范围内稳住发电机输出电压的目的。
(1)同步发电机转子的励磁
所谓励磁即是向同步发马达转子提供直流电使其产生直流电磁场(electromagnetic field)的过程。同步发电机转子凹槽内的线圈就是由称做励磁机的一个专门的设备为其供以直流电形成直流磁场的。早期的发电机是采用单独的励磁机给转子线圈提供直流电的,系统庞大而复杂。随着技术的进步,现代同步发电机都是将发电机与励磁机组装在一起构成一个完整的发电机。
励磁机其实就是个小发电机,它的工作原理与同步发电机一样。所不同的是它的定子线圈和转子(rotor)线圈所起的作用与同步发电机--主发电机正好相反;固定在主发电机定子旁的励磁机的定子线圈通以直流电形成直流磁场,而安装在主发电机转子轴上的励磁机的转子线圈成为输出电动势的电枢。励磁机的转子与定子内壁之间也是保持着小而均匀的间隙。这也称为旋转电枢式结构的无刷同步发电机。安装在主发电机定子旁的励磁机定子线圈的直流电,是由主发电机定子线圈即电枢的部分输出电压经整流后而得到的。与主发电机转子同轴安装的励磁机转子线圈在其定子线圈产生的磁场内旋转、切割磁力线所产生的感应电动势,经同轴安装在它旁边的整流器也就是旋转整流器变成直流电流,输到主发电机的转子线圈使其产生直流转子磁场。从而达到了对主发电机转子线圈励磁的要求。
(2)同步发电机输出电压的调控
调控的目的就是实现在同步发马达额定负荷范围内稳住输出电压。调控技术的理念是实时地从主发电机电枢取得电压和电流,经整流和负反馈调理后供给励磁机的定子线圈,使其产生变化规律与主发电机输出电压变化规律相反的直流电磁场,这个磁场也必然使励磁机转子电枢的输出电压及旋转整流器供给主发电机转子线圈的直流电流按同样的规律而变化。从而起到实时调节主发电机转子磁场大小,使主发电机在额定负荷范围内保持良好输出特性的作用。
对发电机输出电压的调节过程(guò chéng),可以用以下的流程表示;
由于负荷增加使主发电机电枢电压↓(降) →经负反馈调理后励磁机定子电流及磁场↑→励磁机转子电枢输出电压↑→旋转整流器输出电流↑→主发电机转子磁场↑→使主发电机电枢电压↑
若主发电机电压升高,则其反馈调控使以上各环节作用降低,导致电压回到额定值。发电机不接负载时, 电枢电流为零,称为空载运行。此时电机定子的三相绕组只有励磁电流 f感生出的空载电动势E0(三相对称),其大小随 f的增大而增加。但是,由于电机磁路铁心有饱和现象,所以两者不成正比。反映空载电动势 0与励磁电流 f关系的曲线称为同步发电机的空载特性。
可见通过励磁机实时调控主发电机转子磁场的大小,就可以稳住输出电压。发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产、国防、科技及日常生活中有广泛的用途。这其中起重要作用的是负反馈调节单元,通常称其为恒压励磁装置和自动电压调节器。
(3)自动电压调节器
现代交流同步发电机常用自动电压调节器AVR这种电子部件调节励磁机定子(组成:定子铁芯、定子绕组和机座)特性:波粒的辐射的强弱。虽然AVR的种类很多,但性能大同小异;都是实时采样主发电机的输出电压值与预先设定的值相比较,用比较的结果去调节脉冲宽度调制器PWM;输出电压值高则调制器输出脉冲宽度窄,反之则宽。然后再用这些脉冲去调控(释义:调节、控制)大功率(High-power)开关器件即三极管或场效应管控制送入励磁机定子线圈的电流(Electron flow)的时间。从而使它的磁场强弱随着主发电机输出电压的变化而相反变化;即输出电压升高则励磁机定子磁场减小,输出电压降低励磁机定子磁场增强。从而达到负反馈调控的目的。
有这样常用的一种AVR类型。取样自主发电机输出电压的信号从8、9两端输入到电压测量比较单元,与内部预先设定的电压值(例如380V)相比较。比较结果以输出电压UA送入脉冲宽度调制单元PWM,输出电压UC送入低频保护单元。电压测量比较单元的
L、
S、H是连接主发电机输出电压幅值调节电位器的三个端子。
脉冲宽度调制器由稳压器输出的直流电压UCC作为工作电源,以确保其性能稳定。它的输出电压UB控制调制管VT3。若由电压测量比较单元送来的UA大,表明主发马达输出电压升高,则大的UA就会使脉冲宽度调制器输出的脉冲UB的宽度变窄。窄的脉冲就会使VT3导通时间短,通过的电流少。反之,主发电机电压降低UA变小,脉冲宽度调制器输出的脉冲UB的宽度随之变宽,从而使VT3导通时间变长,通过的电流增多。
励磁机定子(组成:定子铁芯、定子绕组和机座)线圈一端接在端子X1上,另一端接在XX1端子上。由主发电机电枢送来的E
A、E
B、Ec三相交流电压,经过三个二极管VD10、VD11、VD12整流后,电流从X1端流入励磁机的定子线圈(winding),由XX1流出,再经过调制管VT3和XN端子流回主发电机电枢,形成励磁机定子线圈的励磁电流通路。VT3是这个通路上的开关,它导通时间长,则定子线圈流过电流时间长,定子特性:波粒的辐射强度(strength)大;VT3导通时间短,定子线圈电流少,定子磁场强度小。
AVR就是这样调控(释义:调节、控制)主发电机的电压的;主发电机由于负荷原因输出电压升高,电压测量比较单元输出的UA随着升高,受UA控制的应用范围:电子、光学、机电、医学等调制器输出脉冲UB宽度变窄,开关管VT3导通时间短,励磁机定子磁场减弱,转子电枢电压及旋转整流器输出电流(Electron flow)随之减小,导致供给主发电机转子的励磁电流变小,则主发电机因其转子磁场的减小而使输出电压降低。发电机不接负载时, 电枢电流为零,称为空载运行。此时电机定子的三相绕组只有励磁电流 f感生出的空载电动势E0(三相对称),其大小随 f的增大而增加。但是,由于电机磁路铁心有饱和现象,所以两者不成正比。反映空载电动势 0与励磁电流 f关系的曲线称为同步发电机的空载特性。反之,AVR的负反馈(fǎn kuì)调控功能就会使主发电机的输出电压升高。
在主发电机因负荷超出额定值而输出极大电流(Electron flow)时,柴油也需随之输出巨大的动力以致导致(cause)其转速低于额定值。低频保护单元的作用就是在这种情况(Condition)下限制(limit)励磁机定子线圈(winding)里电流的超额增大。它以电阻和电容构成的充放电支路预先设定一个低频保护点,当主发电机负荷正常时,从电压测量单元来的UC小于低频保护点,则低频保护单元输出的电压Ud高,晶体二极管VD8被截止,Ud到不了脉宽调制器,起不了作用。若主发电机超载则Ud变低,VD8导通,Ud和UA就可同时作用于脉宽调制器,使其输出的脉冲UB随Ud的下降而变窄,调制管VT3导通时间随之变短,励磁电流减小励磁机定子特性:波粒的辐射变弱,从而导致主发电机转子磁场减小。发电机输出电压下降、电流减小。低频保护单元起到了保护励磁机和主发电机的作用。